ADT7476
pulse to assert a stop condition. In read mode, the
master device overrides the acknowledge bit by
pulling the data line high during the low period
before the ninth clock pulse. This is known as no
acknowledge. The master then takes the data line
low during the low period before the 10 th clock
pulse, and then high during the 10 th clock pulse to
assert a stop condition.
Any number of bytes of data can be transferred over the
serial bus in one operation. However, it is not possible to mix
read and write in one operation because the type of operation
is determined at the beginning and cannot subsequently be
changed without starting a new operation. In the ADT7476,
write operations contain either one or two bytes, and read
operations contain one byte.
To write data to one of the device data registers or read
data from it, the address pointer register must be set so the
correct data register is addressed. Then, data can be written
into that register or read from it. The first byte of a write
operation always contains an address stored in the address
pointer register. If data is to be written to the device, then the
write operation contains a second data byte that is written to
the register selected by the address pointer register.
This write operation is illustrated in Figure 18. The device
address is sent over the bus, and then R/W is set to 0. This
is followed by two data bytes. The first data byte is the
address of the internal data register to be written to, which
is stored in the address pointer register. The second data byte
is the data to be written to the internal data register.
When reading data from a register, there are two possibilities:
1. If the ADT7476’s address pointer register value is
unknown, or not the desired value, then it must
first be set to the correct value before data can be
read from the desired data register. This is done by
performing a write to the ADT7476 as before, but
only the data byte containing the register address
is sent, because no data is written to the register
(see Figure 19).
A read operation is then performed consisting of
the serial bus address; R/W bit set to 1, followed
by the data byte read from the data register (see
Figure 20.)
2. If the address pointer register is already known to
be at the desired address, data can be read from the
corresponding data register without first writing to
the address pointer register (see Figure 20).
It is possible to read a data byte from a data register
without first writing to the address pointer register, if the
address pointer register is already at the correct value.
However, it is not possible to write data to a register without
writing to the address pointer register, because the first data
byte of a write is always written to the address pointer
register.
In addition to supporting the send byte and receive byte
protocols, the ADT7476 also supports the read byte protocol.
See Intel’s System Management Bus Specifications
Revision 2 for more information.
If several read or write operations must be performed in
succession, the master can send a repeat start condition
instead of a stop condition to begin a new operation.
1
9
1
9
SCL
SDA
0
1
0
1
1
A1
A0
R/W
D7
D6
D5
D4
D3
D2
D1
D0
FRAME 2
START BY
MASTER
FRAME 1
SERIAL BUS ADDRESS BYTE
ACK. BY
ADT7476
1
ACK. BY
ADT7476
ADDRESS POINTER REGISTER BYTE
9
SCL (CONTINUED)
SDA (CONTINUED)
D7
D6
D5
D4
D3
D2
D1
D0
FRAME 3
DATA BYTE
ACK. BY STOP BY
ADT7476 MASTER
Figure 18. Writing a Register Address to the Address Pointer Register, then Writing Data to the Selected Register
1
9
1
9
SCL
SDA
0
1
0
1
1
A1
A0 R/W
D7
D6
D5
D4
D3
D2
D1
D0
FRAME 2
START BY
MASTER
FRAME 1
SERIAL BUS ADDRESS BYTE
ACK. BY
ADT7476
ACK. BY
MASTER
ADDRESS POINTER REGISTER BYTE
STOP BY
MASTER
Figure 19. Writing to the Address Pointer Register Only
http://onsemi.com
10
相关PDF资料
ADT7490ZEVB BOARD EVALUATION FOR ADT7490
ADZS-21262-1-EZEXT BOARD DAUGHTER FOR ADSP-21262
ADZS-BF-EZEXT-1 BOARD DAUGHTER ADSP-BF533/561KIT
ADZS-BFAV-EZEXT BOARD DAUGHT ADSP-BF533,37,61KIT
ADZS-BFSHUSB-EZEXT BOARD DAUGHTER EZ EXTENDER
ADZS-BRKOUT-EX3 ADZS-BRKOUT-EX3
ADZS-SHAUDIO-EZEXT SHARC AUDIO EZ-EXTENDER
ADZS-WVGALCD-EX3 BOARD EXTENDER WVGA/LCD EI3
相关代理商/技术参数
ADT7481 制造商:AD 制造商全称:Analog Devices 功能描述:Dual Channel Temperature Sensor and Over Temperature Alarm
ADT7481ARMZ 功能描述:板上安装温度传感器 2 CH TEMP SNSR/ALARM 2 WIRE SMBUS INTRFCE RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor
ADT7481ARMZ-001 功能描述:板上安装温度传感器 2 CH TEMP SNSR/ALARM 2 WIRE SMBUS INTRFCE RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor
ADT7481ARMZ-1 功能描述:IC SENSOR TEMP 2CH ALARM 10MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 热管理 系列:- 标准包装:1 系列:- 功能:温度监控系统(传感器) 传感器类型:内部和外部 感应温度:-40°C ~ 125°C,外部传感器 精确度:±2.5°C 本地(最大值),±5°C 远程(最大值) 拓扑:ADC,比较器,寄存器库 输出类型:2 线 SMBus? 输出警报:无 输出风扇:无 电源电压:2.7 V ~ 5.5 V 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:SOT-23-8 供应商设备封装:SOT-23-8 包装:Digi-Reel® 其它名称:296-22675-6
ADT7481ARMZ-1R7 功能描述:板上安装温度传感器 2 CH TEMP SNSR/ALARM 2 WIRE SMBUS INTRFCE RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor
ADT7481ARMZ-1REEL 制造商:Rochester Electronics LLC 功能描述: 制造商:Analog Devices 功能描述:
ADT7481ARMZ-1REEL7 制造商:AD 制造商全称:Analog Devices 功能描述:Dual Channel Temperature Sensor and Over Temperature Alarm
ADT7481ARMZ-1RL 功能描述:板上安装温度传感器 2 CH TEMP SNSR/ALARM 2 WIRE SMBUS INTRFCE RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor